Limits

Questions

Compute the following limits, or show they don't exist.

Question 1. $\lim_{(x,y)\to(\pi,\pi/2)} y \sin(x-y)$ Question 2. $\lim_{(x,y)\to(2,-1)} \frac{x^2y + xy^2}{x^2 - y^2}$ Question 3. $\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}$ Question 4. $\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$ Question 5. $\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$

Question 6.
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy + yz^2 + xz^2}{x^2 + y^2 + z^4}$$

Question 7.
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2y^2z^2}{x^2 + y^2 + z^2}$$

Question 8.
$$\lim_{(x,y)\to(0,0)} \frac{x^2y + xy^2}{x^2 - y^2}$$

Question 9.
$$\lim_{(x,y)\to(0,0)} \frac{x^3y^3}{x^4+y^4}$$

Answers to questions

Question 1. Since $y \sin(x - y)$ is continuous everywhere, we can just substitute:

$$\lim_{(x,y)\to(\pi,\pi/2)}y\sin(x-y)=\frac{\pi}{2}\sin(\pi-\pi/2)=\pi/2.$$

Question 2. $\frac{x^2y+xy^2}{x^2-y^2}$ is continuous everywhere $x^2 - y^2 \neq 0$, so in particular it is continuous at (2, -1). Again we can just substitute, and obtain the answer -2/3.

Question 3. If we approach (0, 0) along the *x*-axis, the limit is

$$\lim_{x\to 0}\frac{0}{x^4}=0.$$

On the other hand, if we approach along the line y = x, the limit is

$$\lim_{x \to 0} \frac{x^2 \sin^2 x}{2x^4} = \lim_{x \to 0} \frac{\sin^2 x}{2x^2} = \frac{1}{2}.$$

Since we get two disagreeing answers, we conclude that the original 2D limit does not exist.

Question 4. If we switch to polar, we get the equivalent limit

r

$$\lim_{\theta \to 0^+,\theta \text{ any}} \frac{r^3(\cos^3\theta + \sin^3\theta)}{r^2} = \lim_{r \to 0^+,\theta \text{ any}} r(\cos^3\theta + \sin^3\theta).$$

Note that

$$-2r \le r(\cos^3\theta + \sin^3\theta) \le 2r$$

for $r \ge 0$. Because $\lim_{r\to 0^+, \theta \text{ any }} -2r = 0 = \lim_{r\to 0^+, \theta \text{ any }} 2r$, we conclude by the Squeeze Theorem that

$$\lim_{r\to 0^+,\theta \text{ any}} r(\cos^3\theta + \sin^3\theta) = 0$$

as well.

Question 5. Same deal as the preceding. If we switch to polar we get

$$\lim_{r\to 0^+,\theta \text{ any}} r^2 \ln(r^2).$$

In this case we don't need the Squeeze Theorem, and we can just deal with this as a SVC limit. The answer is 0.

Question 6. If we approach along the line (t, 0, 0), we get the limit of 0. If we approach along the line (t, t, 0), we get 1/2. So the limit doesn't exist.

Question 7. You can apply the Squeeze Theorem to show that this limit is zero, by observing that

$$0 \le \frac{x^2}{x^2 + y^2 + z^2} \le 1$$

and so

$$0 \le \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} \le y^2 z^2$$

where both bounds tend to 0 as we approach the origin.

The last two questions are not great because I came up with them spontaneously (the previous ones were from the textbook). Don't worry about them.

Question 8. If you try along any line through the origin other than $y = \pm x$ you get the answer of zero. But the suspicion is that the expression should blow up along these two lines. So let's try along the parabola $y = x - x^2$ (which is tangent to y = x at (0, 0)). We get

$$\lim_{x \to 0} \frac{x^2(x-x^2) + x(x-x^2)}{x^2 - (x-x^2)^2} = \lim_{x \to 0} \frac{x^2 - 1}{x^2 - 2x}$$

which DNE, confirming our suspicions. So the original limit does not exist.

Question 9. After applying the change of variables $u = x^2$, $v = y^2$, this is the same limit as

$$\lim_{(u,v)\to(0,0)}\frac{u^{3/2}v^{3/2}}{u^2+v^2}.$$

You can show that this limit is zero by switching to polar via $u = r \cos \theta$ and $v = r \sin \theta$ and using the Squeeze Theorem, just as in Question 4.