Limits

Questions

Compute the following limits, or show they don't exist.
Question 1. $\lim _{(x, y) \rightarrow(\pi, \pi / 2)} y \sin (x-y)$
Question 2. $\lim _{(x, y) \rightarrow(2,-1)} \frac{x^{2} y+x y^{2}}{x^{2}-y^{2}}$
Question 3. $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \sin ^{2} x}{x^{4}+y^{4}}$
Question 4. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$
Question 5. $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$

Question 6. $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z^{2}+x z^{2}}{x^{2}+y^{2}+z^{4}}$
Question 7. $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2} y^{2} z^{2}}{x^{2}+y^{2}+z^{2}}$
Question 8. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y+x y^{2}}{x^{2}-y^{2}}$
Question 9. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y^{3}}{x^{4}+y^{4}}$

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to questions

Question 1. Since $y \sin (x-y)$ is continuous everywhere, we can just substitute:

$$
\lim _{(x, y) \rightarrow(\pi, \pi / 2)} y \sin (x-y)=\frac{\pi}{2} \sin (\pi-\pi / 2)=\pi / 2 .
$$

Question 2. $\frac{x^{2} y+x y^{2}}{x^{2}-y^{2}}$ is continuous everywhere $x^{2}-y^{2} \neq 0$, so in particular it is continuous at $(2,-1)$. Again we can just substitute, and obtain the answer $-2 / 3$.
Question 3. If we approach $(0,0)$ along the x-axis, the limit is

$$
\lim _{x \rightarrow 0} \frac{0}{x^{4}}=0 .
$$

On the other hand, if we approach along the line $y=x$, the limit is

$$
\lim _{x \rightarrow 0} \frac{x^{2} \sin ^{2} x}{2 x^{4}}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{2 x^{2}}=\frac{1}{2} .
$$

Since we get two disagreeing answers, we conclude that the original 2D limit does not exist.
Question 4. If we switch to polar, we get the equivalent limit

$$
\lim _{r \rightarrow 0^{+}, \theta \text { any }} \frac{r^{3}\left(\cos ^{3} \theta+\sin ^{3} \theta\right)}{r^{2}}=\lim _{r \rightarrow 0^{+}, \theta \text { any }} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right) .
$$

Note that

$$
-2 r \leq r\left(\cos ^{3} \theta+\sin ^{3} \theta\right) \leq 2 r
$$

for $r \geq 0$. Because $\lim _{r \rightarrow 0^{+}, \theta \text { any }}-2 r=0=\lim _{r \rightarrow 0^{+}, \theta \text { any }} 2 r$, we conclude by the Squeeze Theorem that

$$
\lim _{r \rightarrow 0^{+}, \theta \text { any }} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=0
$$

as well.
Question 5. Same deal as the preceding. If we switch to polar we get

$$
\lim _{r \rightarrow 0^{+}, \theta \text { any }} r^{2} \ln \left(r^{2}\right)
$$

In this case we don't need the Squeeze Theorem, and we can just deal with this as a SVC limit. The answer is 0 .
Question 6. If we approach along the line $\langle t, 0,0\rangle$, we get the limit of 0 . If we approach along the line $\langle t, t, 0\rangle$, we get $1 / 2$. So the limit doesn't exist.
Question 7. You can apply the Squeeze Theorem to show that this limit is zero, by observing that

$$
0 \leq \frac{x^{2}}{x^{2}+y^{2}+z^{2}} \leq 1
$$

and so

$$
0 \leq \frac{x^{2} y^{2} z^{2}}{x^{2}+y^{2}+z^{2}} \leq y^{2} z^{2}
$$

where both bounds tend to 0 as we approach the origin.
The last two questions are not great because I came up with them spontaneously (the previous ones were from the textbook). Don't worry about them.
Question 8. If you try along any line through the origin other than $y= \pm x$ you get the answer of zero. But the suspicion is that the expression should blow up along these two lines. So let's try along the parabola $y=x-x^{2}$ (which is tangent to $y=x$ at $(0,0))$. We get

$$
\lim _{x \rightarrow 0} \frac{x^{2}\left(x-x^{2}\right)+x\left(x-x^{2}\right)}{x^{2}-\left(x-x^{2}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}-1}{x^{2}-2 x}
$$

which DNE, confirming our suspicions. So the original limit does not exist.

Question 9. After applying the change of variables $u=x^{2}, v=y^{2}$, this is the same limit as

$$
\lim _{(u, v) \rightarrow(0,0)} \frac{u^{3 / 2} v^{3 / 2}}{u^{2}+v^{2}}
$$

You can show that this limit is zero by switching to polar via $u=r \cos \theta$ and $v=r \sin \theta$ and using the Squeeze Theorem, just as in Question 4.

